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The theory of generation of periodic solutions in canonic systems of near-integ- 
rable differential equations was developed by Poincari for the purposes of celes- 
tial mechanics. In this paper we establish the applicability of these results to the 
classical problem of the motion of a heavy solid body with a fixed point, By the 
same token we have succeeded in essentially widening the class of periodic solu- 

tions appearing in this problem. 

1. Perturbation of uniform rotations. The Hamiltonian function of the 
problem being analyzed has the form 

F = F0 i @, (1.1) 

Here F, is the kinetic energy, @‘, is the system’s potential energy (the chosen constant 
multiplier p, is the product of the body’s weight by the distance from the center of gra- 
vity to the point of fixing). Canonic equations with Hamiltonian (1.1) have a cyclic 
integral, i.e. an area integral ; by fixing it constant, we reduce the problem being ex- 
amined to a system with two degrees of freedom, which we cali reiluced problem. When 
p = 0, we have the Euler-Poinsot case. In this unperturbed problem there exist particu- 
lar isolated periodic solutions, namely, uniform rotations around the principal axes of the 
inertia ellipsoid. Let us ascertain whether the equations with Hamiltonian function(l.1) 
admit of periodic solutions if p # 0 but is very small. 
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Case of a nonsymmetric solid body. 

Theorem 1. Periodic solutions of the unperturbed reduced problem - nonvertical 
constant rotations around the principal inertia axes - do not vanish under the addition 

of a perturbation , but for small p turn into periodic solutions of the perturbed problem 
depending analytically on the small parameter p and on the energy constant. 

Consequently, at almost all three-dimensional energy levels the perturbed reduced 
problem has six periodic solutions for small values of p. 

Since we are examining the nonvertical uniform rotations of the unperturbed problem to 
prove this assertionwe can pass tothe canonic Depritvariables (I, g, k L G, -H) [I]* 

Function (1.1) written in these coordinates do not contain the angular variable h. 

Therefore, H is the first integral of the canonic equations (the area integral) ; a low - 
ering of the system’s order is achieved by fixing it constant. Let A, B> C be the 

principal central moments of inertia of the solid. We assume A > B > C. The Ha- 

miltonian of the Euler-Poinsot problem in the Deprit variables has the form 

F, z _+ y + F 
( J 

(G” _ L2) + _&_ 

Let us consider the rotation around the minor inertia axis (with period T) 

L=Q,G=G,,l-~,g=~t+g,,T=~ (1.2) 

Applying the small parameter method, we denote the deviations from the periodic solu- 

tion (1.2) when p, = () by L,, G,, I, and g,, respectively. Then the linear equations 

L,’ = +G,,21,, G; = 0, 1,’ = +f$ L,, g; = +- (1.3) 

are the equations in variations for the generating solutions. They are easily integrated 

G, = GI,o, g, = ‘1;’ - t + gl,o? L, = A, sin ot + B, cos o)t 

I, = A2 sin ot + B2 cos ot, co2 = (‘I - ‘Lt’ --C’- $ ’ > 0 
i 1 

L 
RI = Ll,o, B2 = ll,o’, A, = G -$- ll,o, A2 = +$+ 

We note that 
‘41‘4~ (B - II) (‘4 - C) 2 

s- 
=- 

AlBC 
!I 

The monodromy matrix of Eqs. (1.3) is 

X (T) = 

cos(o2’) 0 1 A’ sin (oT) 0 
170 

0 1 0 0 

Asin 0 0 
L 

cos (WT) 
110 

0 q 0 1 

According to the modification of Poincare’s small parameter method, proposed in [Z] , 

we need to form the matrix Y (T) -= X (T) - E and ascertain that the rank of this 
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matrix equals three. It can be shown that this condition is satisfied ; consequently, in the 

system with Hamiltonian (1.1) there exist periodic solutions depending analytically on 
p, whose period differs slightly from T. 

By crossing out the last column and the second row from matrix Y (2’) we obtain a 
matrix whose determinant is 

4nC,-l[cos (UT) - 11 

In order that the determinant be nonzero, it is necessary to require the fulfillment of the 
condition oT # 2nk (k Is an integer) or, equivalently, 

[(A - B)(A - C) / (BC)]“’ # k 

Let us show that this inequality is always valid. In fact, otherwise 

A = B + C + (k2 - i)BC / A 

For k # 0 the last relation contradicts the triangle inequality A < B + C, while for 
k = 0 it follows easily from the condition A > B > C. Thus, the rank of matrix Y 

equals three. 

Let us establish that the periodic solutions of the perturbed problem depend analytically 
on the energy constant. To do this we set up the following fifth-order matrix 

y, cp z=q, 0 II I 
where cp is the column vector of the right-hand side of the unperturbed system of equa- 
tions, while 9 is the row OF, / aL, dF, i Xl, dF, I al, aF, / ag), into which the so- 
lution (1.2) with t = T have been substituted. It can be shown that the rank of matrix 

2 equals four ; therefore [2], the solutions found depend analytically on the constant 

energy integral. In fact, by crossing out from E the last column and the second row, 
we obtain a matrix whose determinant is 

- (C, / A)2 [cos (d”) - 11 

As was shown above this quantity never vanishes. 

For uniform rotations around the major and the mean axes of inertia the theorem is 
proved in exactly the same way (with the sole difference that in the case of the mean 

axis the solution of Eqs. (1.3) is expressed not in trigonometric but in hyperbolic func- 

tions of time). 
Case of dynamic symmetry. 

Theorem 2. If A = B # C, then two periodic solutions of the unperturbed 
reduced problem - nonvertical constant rotations around the axis of symmetry in oppo- 
sing directions - do not vanish under the addition of a perturbation, but for small p 
turn into periodic solutions of the perturbed problem, depending analytically on parame- 
ter p and on the constant energy integral. 

The proof of this assertion is analogous to the proof of Theorem 1. 
Notes. 1. The case A = B = C is not examined because it relates to the integ- 

rable cases. 
2. A number of special cases of integrability are known for the problem being 

analyzed [3]. On the whole they are periodic solutions expressed in finite form in terms 
of known functions. Some of them (for example, the Bobylev-Steklov solutions) are, for 
small values of parameter k , special cases of the periodic solutions whose existence is 
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proved in Theorems 1 and 2. 

2, The generation of isolatsd periodic solutions from familio 
of periodic solutions of ths Euler-Pofnrot problem. The proof of 
Theorems 1 and 2 did not rely on the actual form of the perturbing function but used 

only its invariance relative to vertical rotations and its analyticity. Let us indicate a 
set of new periodic solutions whose existence is closely related with the properties of 

the whole Hamiltonian function of the problem under analysis. 
Case of a nonsymmetric solid body. We assume A > B > C. In the 

reduced Euler-Poinsot problem we introduce in the usual manner the variables action- 

angle (see [4]) 

By cpt and ~rwe denote the canonical coordinates adjoint to I, and 1,. In a real mo- 

tion the variables L and C are connected by the inequalities G > 0, 1 L, 1 < G ; 
therefore, the region of possible values of 1, and 1, is A = {I,, I?: 1, > 0, 
1 I, [ < I,}. In the canonic variables action-angle the Hamiltonian I:, depends only 

on 1, and I? , i.e. I;0 = F,(I,, 1s). Using formula (2.1) it is easy to get that the 
level lines of the function 2 F&II, I,) I 42 in the “action” coordinates are straight 
lines passing through the origin. We note that the straight lines 1, : 0, 1 II 1 = 1, 
(lying in A) correspond to the uniform rotations of the solid around the major and mi- 
nor axes of inertia, respectively. The points from A located on the two straight lines 

2F, / I,2 =- 1 / B correspond to the rotations around the mean axis. 
The following assertions can be proved with the aid of formula (2.1). 
Lemma 1. The function F,ff,, 1,) is continuous in A and analytic in the region 

AA = A \ ((1, z O} U (2170 / I2’ =- l/R} U { / I, 1 = 1,)) 

Lemma 2. The Hessian l@F, / a_Tidlj 1 (i, j = 1,2) preserves sign in each of 
the four connected subregions of region LI\A (cf [5]). 

Let us consider Poinsot’s geometric representation, When the tangent point (pole) 
makes one full turn on the inertia ellipsoid, the body turns around the constant moment 

axis by a certain angle a = a (2 F, i Is”; A, B, c). We set oi = dF, I 3Ii, 
Oi -= Oi(Ir, 1,). (i =: l,2) (the frequencies of the Euler-Poinsot problem), 

Lemma 3. (See [6], Sect. 86) 

o, / o1 = (244x (2F, ,’ Iz2; A, B, C) 

Lemma 4. The function a lx; A, B, C) is analytic on (1 / A, 1 / C) \ (1 I’ B j 
and a -+03 if and only if x + 1 / B (cf [5]). 

It is convenient to denote the area integral by I,. The expansion of the perturbing 
function Fl(lll,l,~,rpz) into a double Fourier series in the variables rpr and ‘pa has the 
following form ( [6], Sect. 89): 

Here B,,I. B,,-1, B,, o are functions of I,, I?, I,, analytic in region AA for fixed 
I a . By x,,, y,,, z. we denote the coordinates of the center of gravity of the body in the 
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principal inertia axes. 
Theorem 3. bet 1, # 0, I, # 1 f3 1. Consider the set of invariant tori of the 

reduced Euler-Poinsot problem with rotation numbers 

(254~‘a (2Fo I .ls2; A, B, C) = k 

where k is an integer. If z. = 0, then k is odd; if 20~ f yo2 = 0, k is even; finally, 

if za # 0 and zo2 + y,a # 0, k is any integer, 
Par any nonsymme~ic body there exists iV (A, B, C) such that for k > N from the 

family of periodic solutions lying on each of these tori there are generated under pertur- 
bation at least two isolated periodic solutions existing for sufficiently small p and de- 

pending analytically on this parameter. One of them is stable in the first approximation, 
while the other is unstable. Lemma 4 shows that there exist an infinite number of inva- 
riant tori of the Euler-Poinsot problem, with rational rotation numbers, on which at least 

two isolated periodic solutions of the perturbed problem are generated. 
Proof, Suppose that the frequencies al, o2 of the unperturbed Euler-Poinsot prob- 

lem are commensurable for I = (I,, I,) = I” E AA . Then the function F,(I”, air, 

o,t + A) is periodic in t. We denote its time average by p,(r”, h) . In order for 
pairs of isolated periodic sulutions to be generated on the torus 1 = P , it is sufficient 

to verify the fulfiIlment of the following conditions ( [6], Sects. 42, 79): (1) the Hessian 

iazFO I 81z 1 # 0 for I = I”, (2) daP1 / 811= + 0 when aF, I dk == 0 (I = I“), 
(3) the auadratic form 

when 1 = ro. 
Condition 1 is satisfied in the whole region AA ( Lemma 2). Condition 3 means geo- 

metrically that the level line of function F&I,, 1,) does not have an inflection at the 
point (II, r2) = I”. Using formula (2.1) it can be proved that this condition is satisfied 

everywhere in AA. Expansion (2.2) can be written more precisely (see [4]): 

a’ 

F1 = (sin6sincpz, sin6cosqpz, cos 6) (SiJ 

0 

P (2.3) 
7 

cosd = +, a=0, 
r 

p = + , y = + , r = l/ro2 + yo2+ zi2 

Here the elements of the square third-order matrix (sij) are independent of r&.; the 
expansions Of Sij into Fourier series in rp,are written out in [4]. 

We restrict ourselves to the case when 50’ -i- Ij 02 = 0, while z. # 0 (the other cases 
mentioned in the theotm are analyzed analogously). Then, according to (2.3) and [4-J, 

we can write Fr in the following form: 

F1 = 7 (s13 sin 6 sin ‘pz + s2s sin 6 cos ‘pz _I- ss3 cos 6) = 

2n 

7KYTX2+A2 

fin (1 - (r2”) ch 5 sin 2n @ sin (p2 

:isin $$ f -2@n i&26+ 94n + 

qn (I + q"') sh 6 cos 2rql cos ‘PZ 1 - --- 
1 - zgzn ch 23 + q4n 4sh 6 1 

+ 
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Here K (A) is the complete elliptic integral of the first kind with modulus A, while 
F is an ellipticintegral of the first kind. We set cpr = ait: 9J = o,f $- h, w2 i 
0 t = 2n, (n is a positive integer). Then 

Since sin 6 # 0 (otherwise, ( J3 ( = I,), then Condition 2 of Poincark’s theorem 

is violated only if 
(1 - q”“) ch o - (1 + $?I) sh o z: 0 (2.4) 

When 12 -+ 00, according to Lemmas 3 and 4 the function 2F,, / Is2 tends to 1 / B, 
and obviously, A -+ C / A (< 1). Since A is a continuous function of 2F, / I,2 
in some neighborhood of the point 1 / B, there exists a number NItA, B, C) such 

that the inequalities 
(I< A,< A< A,( 1, Ai r COllSt, _ i 7 1,X 

are valid for o2 / 01 = 2n > Nr . It is obvious that 1 (5 I< Go and ) q ) < q. < 1 
(as the result A,. 12,~ G o and qO depend only on A, B, C). Consequently. there exists 

a number A’ (A, B, C) (N > N,) such that equality (2.4) cannot be satisfied for 

O,i@l = 2n ;> N. 
Case of dynamic symmetry, In the case A :m 61 it can be shown that in 

the Deprit variables the Hamiltonian function (1.1) has the torm 

where (x0, 0, zo) are the coordinates of the center of gravity in the principal inertia 

axes, and P is the body’s weight. We note that these variables are the variables action- 

angle of the integrable Euler-Poinsot problem in the symmetric case. 
T he ore m 4. Let zO # C and A == B > 2C. Then, for small 1~ pairs of isolated 

periodic solutions of the perturbed system are generated on the two-dimensional invari- 
ant tori 

$=+---?i_)L Gf-0, G#lHI 

of the reduced Euler-Poinsot problem. They depend analytically on p and one of the 
solutions in each pair is stable in the first approximation, while the other is unstable. 

This assertion is proved in the same way as Theorem 3. 
Note. With the aid of the construction proposed in n] we can prove that not all the 

periodic solutions lying on any invariant torus of the Euler-Poinsot problem with a ratio- 
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nal number of rotations vanish under the addition of perturbation, but at least two are 
left when p is small. However we do not know whether they are isolated and depend 

analytically on P. 

3, The nonexirtence of an addltionol analytic integral of the 

equatfonr of motion of a non@ymmttrtc solid body. The generation 
of a large number of nonsingular periodic solutions of the equations of motion of a non- 

symmetric body is incompatible with the inte~abili~ of this problem, We can prove 

the following assertion using Theorem 3. 

T he ore m 5. The canonic equations of motion of a nonsymmetric heavy solid body 
with Hamiltonian function (1.1) do not have a third analytic integral, analytically depen- 

ding on parameter n , independent of the classical ones, and being in involution with the 
area integral. 

Proof. Assume the contrary, i. e. let such an integral exist. Then, by virtue of the 
assumption on involution, there exists an additional independent integral of the reduced 

canonic system of equations: we denote it by @ = <Do + 1.~ (D, + . . . . It can be 
shown that the functions F0 and CD,, are related at all points of the two-dimensional 
invariant-tori of the Euler-Poinsot problem, which we dealt with in Theorem 3 (we call 

them resonance tori). 
In fact, the periodic solutions I’ (P), arising from the structure of the periodic solutions 

located on an arbitrary resonance torus T,s of the Euler-Poinsot problem, are not singu- 

lar. Therefore, as was proved in [6], the functions F and Al, are related at all pointsof 

I (P). Let P tend to zero. The periodic solution I? (P) goes into the periodic solution 

I (0) of the unperturbed problem, lying on TQ2, while the functions F and Q go into 
F, and CD, , respectively, By continue the fictions F, and Q,, are related at all points 

of the trajectory of the periodic solution P (0). In some neighborhood of torus To2 on 
which I‘ (0) lies, we introduce the variables action-angle of the Euler-Poinsot problem, 
i.e. (I1lzcplcp,). Then F. and ‘D,, depend only on I1 and I, (by virtue of the nonsingular- 
ity of the reduced Euler-Poinsot problem). Since the functions F, and CD, are related 

on I? (0), the Jacobi matrix a (F,,, c&,) / a(1, 9) is of unity rank when (1, cp) E l?(O). In par- 
ticular, a (F,, @,)/‘a (iI, 1%) -= 0 at these points. However, the initial Jacobi matrix does 
not depend on (p, hence its rank equals unity at all points of torus To2 and, consequently, 
the functions F, and CD, are related on the torus. Thus, we have proved that the func- 
tions F,_and @O are related on the set of all resonance tori of the reduced Euler-Poinsot 

ptoblem. 
It is not difficult to show that the set of all resonance tori possess the following key 

property: if the analytic function f vanishes on the set, then f f 0 in the whole phase 
space. Since the functions F, and CD,, are analytic, they are related in the whole phase 
space, i.e. are simply functionally related, At the same time it can be shown that ifan 
additional independent integral (1) exists, then there exists an analytic integral @’ such 
that the functions F,, and @s’ are unrelated (see [S], Sect. 81). The contradiction ob- 
tained proves the validity of the theorem. 

Note. The basic idea of the arguments advanced is contained in Poincard’s first 
proof of the general theorem on the nonintegrability of near-integrable canonic equa- 
tions ( [8], Sect. 22). But, as Poincark himself remarked, his general theorem is inappli- 
cable to the problem being examined ( [6], Sect. 86). The success of the proof presented 
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above consists in the use of the key property of the set of resonance tori of the unperturbed 

problem, 
The author thanks V. I. Arnol’d and Iu. A. Arkhangel’skii for attention and advice, 
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We examine a class of functions of higher than first order in smallness in the 
equations of perturbed motion, for which the stability problem in critical cases is 
completely solved in a linear approximation. More precisely, we give a general- 

ization of Malkin’s theorem on the singular case of several zero roots to the case 
when the characteristic equation has pure imaginary roots. We consider the in- 
stability question. 

Let us 
the functions 

consider a system of differential equations of perturbed motion (1. l),where 
Yt and X, satisfy conditions (1,2), (1.3) 

(Ll) 

(1.2) 

(1.3) 


